C.U.SHAH UNIVERSITY Winter Examination-2015

Subject Name : Engineering Mathematics IV

Subject Code : <u>4TE04EMT1</u> Branch : <u>Auto/Mech/Civil/EEE/EE/IC/EC</u>

Semester : <u>4</u>	Date : <u>18/11/2015</u>	Time : <u>2:30 To 5:30</u>	Marks : <u>70</u>
_			

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (2 Marks each)

- a) To interpolate the value of a function near the beginning of tabular values, Stirling's interpolation formula can be used. True or False? Justify
- **b**) Prove that $\mu = \frac{1}{2} \left(E^{1/2} + E^{-1/2} \right)$
- c) In Numerical differentiation $\left(\frac{d^2y}{dx^2}\right)_{x=x_0} =$
- d) State the condition of convergence in Gauss-Seidal method.
- e) To evaluate definite integral with even number of sub intervals, Simpson's $\frac{1}{3}$ rule can be used. True or False? Justify.
- **f**) Write the Cauchy-Riemann equations in polar form.
- **g**) Check whether the vector $\vec{V} = (x y)\hat{i} + (y z)\hat{j} (x z)\hat{k}$ is solenoidal.

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

A Using Lagrange's interpolation formula, find y at x = 6

x	3	7	9	11
у	168	120	72	63

Page 1 || 3

(14)

B Find the Fourier transform of $e^{-x^2a^2}$, a > 0 and deduce that $F\left(e^{-\frac{\lambda^2}{2}}\right) = e^{-\frac{\lambda^2}{2}}$

Q-3 Attempt all questions

A The population of a certain town is given below. Find the rate of growth of the population in 1931 to 1971.

Year (x)	1931	1941	1951	1961	1971
i cui (ii)	1701	1711	1701	1701	17/1
Population (v)	40.62	60.80	79.95	103.56	132.65
In thousands					
in mousands					

B Define Harmonic function. Show that the function $\frac{1}{2} \log (x^2 + y^2)$ is harmonic and determine its conjugate.

Q-4 Attempt all questions

A Using Runge-Kutta method of fourth order , find y(0.2) by taking h=0.1 if

$$\frac{dy}{dx} = x + y^2 \quad , \quad y(0) = 1$$

B Find the analytic function f(z) = u + iv, whose real part is $e^x(x \cos y - y \sin y)$.

Also find the corresponding imaginary part.

Q-5 Attempt all questions

A Using Taylor's Series method, solve

$$\frac{dy}{dx} = x^2 y - 1$$
, $y(0) = 1$ for $x = 0.1$ and $x = 0.2$

B Verify Stokes's theorem for $\vec{F} = (x^2 + y^2)\hat{i} - 2xy\hat{j}$ over the rectangle bounded by the lines $x = \pm a$, y = 0, y = b.

Q-6 Attempt all questions

A Solve the following system of equations by Gauss elimination method

3x+4y-z=8 , $-2x\ +y+z=3$, x+2y-z=2

Page 2 || 3

(14)

(14)

(14)

(14)

B Verify Green's theorem in the plane for $\oint_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$ where C is the boundary of the region defined by $y = \sqrt{x}$, $y = x^2$

(14)

(14)

Q-7 Attempt all questions

A Solve the following system of equations by Gauss – Seidel method correct to three decimal places.

$$10x + 2y + z = 9$$
, $2x + 20y - 2z = -44$, $-2x + 3y + 10z = 22$

B A particle moves along the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where *t* is the time. Find the components of its velocity and acceleration at time t = 1 in the direction $\vec{i} - 3\vec{j} + 2\vec{k}$.

Q-8 Attempt all questions

A Evaluate
$$\int_{0}^{1} \frac{dx}{1+x}$$
 taking 7 ordinates by applying Simpson's $\frac{3}{8}$ rule. Also

compare your answer with actual value obtained by usual integration.

B Using Fourier integral, Prove that
$$\int_{0}^{\infty} \frac{\cos \omega x + \omega \sin \omega x}{1 + \omega^{2}} d\omega = \begin{cases} 0, x < 0 \\ \frac{\pi}{2}, x = 0 \\ \pi e^{-x}, x > 0 \end{cases}$$

